Statistical reconstruction for x-ray CT systems with non-continuous detectors.
نویسندگان
چکیده
We analyse the performance of statistical reconstruction (SR) methods when applied to non-continuous x-ray detectors. Robustness to projection gaps is required in x-ray CT systems with multiple detector modules or with defective detector pixels. In such situations, the advantage of statistical reconstruction is that it is able to ignore missing or faulty pixels and that it makes optimal use of the remaining line integrals. This potentially obviates the need to fill the sinogram discontinuities by interpolation or any other approximative pre-processing techniques. In this paper, we apply SR to cone beam projections of (i) a hypothetical modular detector micro-CT scanner and of (ii) a system with randomly located defective detector elements. For the modular-detector system, SR produces reconstruction volumes free of noticeable gap-induced artefacts as long as the location of detector gaps and selection of the scanning range provide complete object sampling in the central imaging plane. When applied to randomly located faulty detector elements, SR produces images free of substantial ring artefacts even for cases where defective pixels cover as much as 3% of the detector area.
منابع مشابه
Assessment of X-Ray Crosstalk in a Computed Tomography Scanner with Small Detector Elements Using Monte Carlo Method
Introduction: Crosstalk is a leakage of X-ray or light produced in a matrix of X-ray detectors or array of photodiodes in one element to other elements affecting on image contrast and spatial resolution. In this study, we assessed X-ray crosstalk in a computed tomography (CT) scanner with small detector elements to estimate the effect of various parameters such as X-ray tube voltage, detector e...
متن کاملPlausibility of Image Reconstruction Using a Proposed Flexible and Portable CT Scanner
Abstarct: The very hot and power-hungry x-ray filaments in today's computed tomography (CT) scanners constrain their design to be big and stationary. What if we built a CT scanner that could be deployed at the scene of a car accident to acquire tomographic images before moving the victim? Recent developments in nanotechnology have shown that carbon nanotubes can produce x-rays at room temperatu...
متن کاملA statistical correction method for minimization of systemic artefact in a continuous-rotate X-ray based industrial CT system
The use of a linear detector array (LDA) in X-ray computed tomography (CT) imaging is well established. Generally the CT system using an LDA operates in a fan-beam configuration. In a non-medical tomography set-up, the X-ray source and detectors are stationary and the object is rotated for scanning. Equi-spaced angular projections over a complete 360 object rotation are required for CT image re...
متن کاملImpact of Photon Spectra on the Sensitivity of Polymer Gel Dosimetry by X-Ray Computed Tomography
Introduction: The purpose of the current study was to investigate the effect of X-ray spectra on the sensitivity of a polymer gel dosimeter imaged with a conventional computed tomography (CT) scanner. Material and Methods: The whole process of CT imaging of an irradiated polymer gel was simulated by MCNPX Monte Carlo (MC) code. The imaging of polyacrylamide gel was accomplished by means of a co...
متن کاملMedical Physics International
Computed tomography (CT) is a well stablished imaging technique that is used worldwide for diagnosis and treatment planning. The purpose of this review is to describe the most notable technological advances in the last decade, with a special focus on their impact in CT dose optimization, that is, achieving the same diagnostic image quality at a reduced radiation dose. The review describes main ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physics in medicine and biology
دوره 52 2 شماره
صفحات -
تاریخ انتشار 2007